Exercise 36

Suppose that an object moving in direction $\mathbf{i}+\mathbf{j}$ is acted on by a force given by the vector $2 \mathbf{i}+\mathbf{j}$. Express this force as the sum of a force in the direction of motion and a force perpendicular to the direction of motion.

Solution

The aim is to decompose the force vector \mathbf{F} into components parallel and perpendicular to the direction of motion.

$$
\mathbf{F}=\mathbf{F}_{\|}+\mathbf{F}_{\perp}
$$

$\mathbf{F}_{\|}$will be found first. Start by taking the dot product of \mathbf{F} with a unit vector in the direction of motion.

$$
(2,1) \cdot \frac{(1,1)}{\sqrt{1^{2}+1^{2}}}=\frac{(2,1) \cdot(1,1)}{\sqrt{2}}=\frac{3}{\sqrt{2}}
$$

This represents the component of \mathbf{F} parallel to the motion. Multiply it by the unit vector in this direction to get $\mathbf{F}_{\|}$.

$$
\mathbf{F}_{\|}=\frac{3}{\sqrt{2}} \frac{(1,1)}{\sqrt{1^{2}+1^{2}}}=\frac{3}{2}(1,1)
$$

To get \mathbf{F}_{\perp}, subtract $\mathbf{F}_{\|}$from \mathbf{F}.

$$
\begin{aligned}
\mathbf{F}_{\perp} & =\mathbf{F}-\mathbf{F}_{\|} \\
& =(2,1)-\frac{3}{2}(1,1) \\
& =(2,1)-\left(\frac{3}{2}, \frac{3}{2}\right) \\
& =\left(\frac{1}{2},-\frac{1}{2}\right) \\
& =\frac{1}{2}(1,-1)
\end{aligned}
$$

Therefore,

$$
\mathbf{F}=\frac{3}{2}(1,1)+\frac{1}{2}(1,-1) .
$$

